

## **TECH TRANSFER AND QRM**

TIM HOWARD, PE CPIP
VICE PRESIDENT- COMMISSIONING AGENTS, INC.

SAAPI Conference Bytes Conference Centre, Midrand Friday, Oct 6<sup>th</sup>, 2017



#### **COMMISSIONING AGENTS, INC.**



460+ **Agents** Global Presence

**Business Areas** 

\$500M+ Services delivered

150 **Active Projects** 

21 Years Of safety excellence

A global partner in providing professional services to enhance operational performance and reliability.





Asset Management & Reliability



Automation & Information



BioVoke™ eVLM



**Building Commissioning** 



Commissioning & Qualification

#### **LOCAL SERVICES**



Full Scale Operations™



**Human Performance** 



Owner's Project Management



Process & Manufacturing Technologies



Quality, Compliance, & Regulatory

When you need to meet a higher standard.

#### What is Technical Transfer?

#### **ISPE**

The systematic approach that is followed in order to pass the documented knowledge and experience gained during development and/or commercialization to an appropriate, responsible, and authorized party

#### **ICH Q10**

Transfer of product and process knowledge between development and manufacturing, and within or between manufacturing sites to achieve product realization

new product transfers during development through manufacturing

ispe.org

transfers within or between manufacturing and testing sites for marketed products

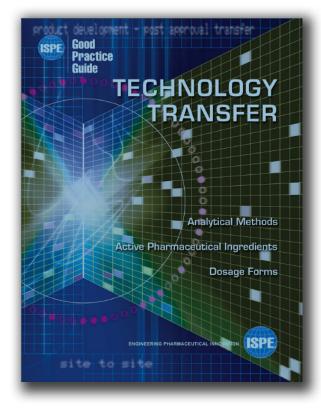


# **Key References**

ICH Q8R2

ICHQ10

**ISPE Tech Transfer Guide 2014** 


**ISPE PQLI guides** 

WHO guide 2011

**EMEA** annex 15

**Draft annex 12- lifecycle management** 

Connecting





Pharmaceutical Knowledge ispe.org

#### Technical Transfer Examples

#### New product to the market

Limit client risk yet maximize speed to market

#### Scale-up of an existing process

Creative solutions typically required for implementation

#### Movement of production to new facility

New can cost less. Like for like expected.

#### **Process improvements**

Continual improvement to improve product cost a must



#### Types of Technical Transfers: Risk Assessment

#### **Each type of Tech Transfer comprises similar risk elements**

| Sending | Receiving | New<br>Product | Same or<br>Single<br>Market | New or<br>Multiple<br>Market(s) | Existing<br>Production<br>Line | New<br>Production<br>Line | Equivalent<br>Equipment | Equipment<br>Change | >10x<br>Scaleup | Process<br>Change | New<br>Process |
|---------|-----------|----------------|-----------------------------|---------------------------------|--------------------------------|---------------------------|-------------------------|---------------------|-----------------|-------------------|----------------|
| Site 1  | Site 1    | No             | Low                         | Med                             | NA                             | Med                       | Low                     | Med/High            | High            | Med/High          | High           |
| Site 1  | Site 1    | Yes            | High                        | High                            | Low/Med                        | Med                       | Low                     | High                | High            | NA                | High           |
| Site 1  | Site 2    | No             | Low                         | Med                             | Low                            | Med                       | Low                     | Med/High            | High            | Med/High          | High           |
| Site 1  | Site 2    | Yes            | High                        | High                            | Med                            | Med                       | Low                     | High                | High            | NA                | High           |

The risk assessment needs to include key cross-functional activities that comprise the boundaries of a TT



necting Pharmaceutical Knowledge ispe.org

#### Measures of Success of a TT program



Does the approach promote the delivery of working equipment and automation, to achieve smooth transition to full scale operation?

Is the approach efficient in terms of effort (cost) and time (schedule)?

Is the program product/process focused, initiated with Process robustness?

Will the approach be found acceptable by regulators?

ISPE Connecting Pharmaceutical Knowledge ispe.org

# The WHAT – Define Project Scope

# Define the Project Scope and establish clear objectives with specific acceptance criteria.

- > Proposed Registration and Launch Timings
- > Safety Information (MSDS, Fire & Health Hazards etc.)
- > Commercial needs (e.g. forecast Volume)
- > Cost of Goods
- > Tech transfer budget



**Pharmaceutical** Knowledge

#### The WHO – Establish the Team

# Appoint a Team Leader and Form a cross functional project team

CORE EXPERTISE: Process Development, Manufacturing Operations - (manufacturing, engineering and maintenance, production QA, QC, Validation)

**SUPPORT EXPERTISE**: Regulatory affairs, EHS, Medical, Marketing, Supply Chain



# The HOW – Establish the Plan

# Develop a Comprehensive Execution Plan that captures:

- > Goals and timing
- > Facility fit and regulatory strategy
- > Process tech transfer requirements
- Managing documentation
- > Effective Team Communications
- > Roles and Responsibilities
- > Project schedule and resource requirements & tracking team performance



**Pharmaceutical** Knowledge

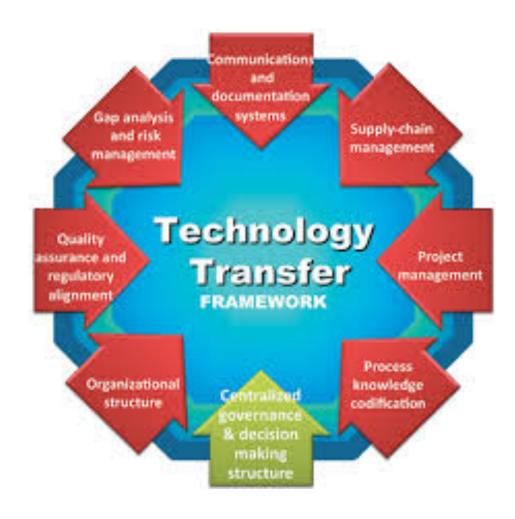
# **Documentation Hierarchy**

**TT Master plan** 

**Subplans** 

**TT Risk Assessment** 

**Process Robustness study** 


**TT SOP/protocols/Templates/reports** 

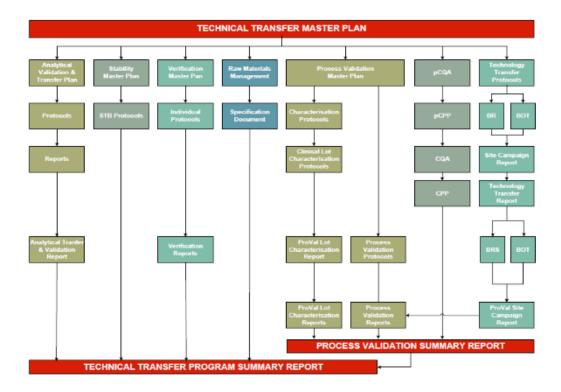


ng Pharmaceutical Knowledge ispe.org

#### **CAI Tool Box**

- Program Management Plan
- Technology Transfer Plan
- TT Project Execution Plan
- Lifecycle Phase Checklist
- Subordinate plans/Reports
  - CQV
  - Cleaning
  - Materials Mgt/Control
  - Supply Chain
  - Analytical Methods Validation
  - PQS
- PM tools
  - Schedule/Action/Decision logs





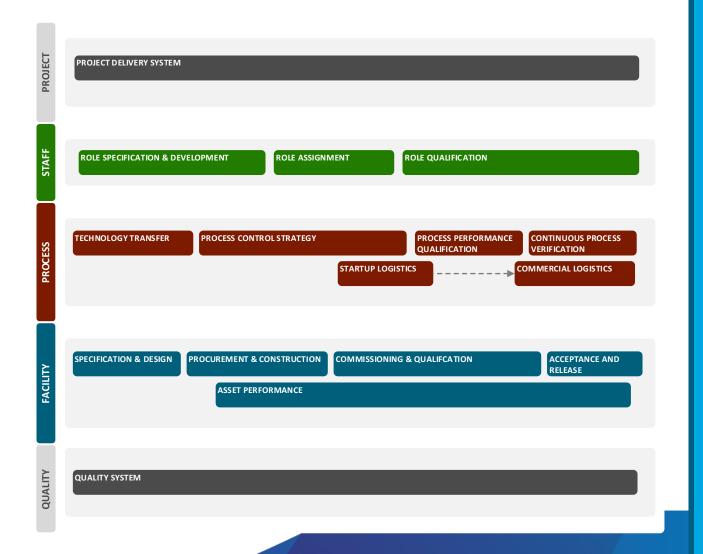

Connecting Pharmaceutical Knowledge ispe.org

#### CONTENTS

| 1.  | SUMMARY                                   | 2 |
|-----|-------------------------------------------|---|
| 2.  | PURPOSE                                   | 2 |
| 3.  | SCOPE                                     | 2 |
| 4.  | RESPONSIBILITIES                          | 2 |
| 4.1 | Technical Transfer Core Team              | 2 |
| 4.2 | Technical Transfer Extended Teams         | 2 |
| 4.3 | Research and Development (R&D)            | 2 |
| 4.4 | Technical Department                      | 2 |
| 4.5 | Operations                                | 2 |
| 4.6 | Quality Assurance (QA)                    | 2 |
| 4.7 | Regulatory Affairs (RA)                   | 2 |
| 4.8 | Operations Sites (PFI and JP)             | 2 |
| 5.  | DEFINITIONS                               | 2 |
| 6.  | ABBREVIATIONS                             | 2 |
| 7.  | TECHNOLOGY TRANSFER PHASES & ASPECTS      | 2 |
| 7.1 | Feasibility                               | 2 |
| 7.2 | Planning                                  | 2 |
| 7.3 | Technology Transfer Plan                  | 2 |
| 7.4 | Technology Transfer Implementation        | 2 |
| 7.5 | Raw Materials                             | 2 |
| 7.6 | Environmental Health and Safety           | 2 |
| 8.  | PROCESS AND EQUIPMENT DESCRIPTION         | 2 |
| 9.  | QUALIFICATION AND VALIDATION STRATEGY     | 2 |
| 9.2 | Analytical Method Validation and Transfer | 2 |
| 9.3 | Stability Testing for BAC2                | 2 |
| 9.4 | Additional Studies                        | 2 |
| 10. | TRANSFER STAGE                            | 2 |

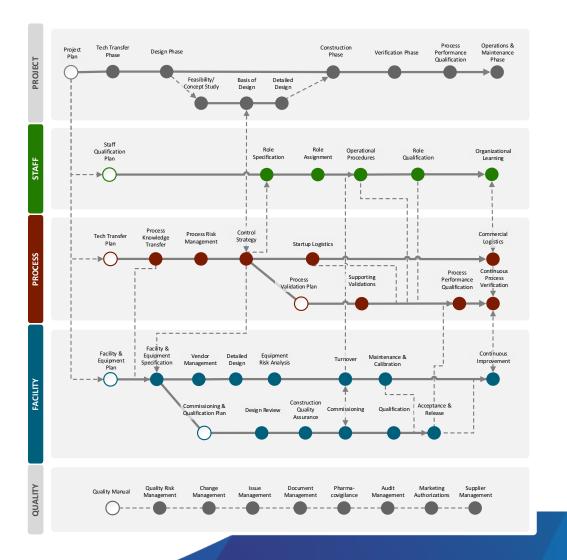
# Technology Transfer Master plan






Connecting Pharmaceutical Knowledge

### **TT Checklist**


Dev = Development, Mfg = Manufacturing, Eng = Engineering, Reg = Regulatory, QA = Quality Assurance, Anl = Analytical, Val = Validation, Legal = Legal, PM = Project Management, Log = Logistics, EH&S = Environmental, Health, and Safety, Dis = Function E-E = Existing Drug to Existing Site, E-N = Existing Drug to New Facility, N-E = New Drug to Existing Facility, N-N = New Drug to New Facility.

| Type     | PROJ            | Activity                                                    | Phase       | Dis        | Deliverable      | Ref | Project  |
|----------|-----------------|-------------------------------------------------------------|-------------|------------|------------------|-----|----------|
| E-E      |                 | Technical Development                                       | Prior to    | Dev,       | Go/No-Go         |     |          |
| E-N      |                 | Initial Process Description                                 | Transfer or | Mfg,       | Decision         |     |          |
| N-E      |                 | Initial Product Description                                 | Feasibility | Eng,       |                  |     |          |
| N-N      |                 | Dosage and Delivery                                         |             | Reg,       |                  |     |          |
|          |                 | Materials (consider European/Japanese/United                |             | QA         |                  |     |          |
|          |                 | States Pharmacopoeia or Multi-compendia)                    |             |            |                  |     |          |
|          |                 | Specifications                                              |             |            |                  |     |          |
|          |                 | Method Development                                          |             |            |                  |     |          |
|          |                 | Instrumentation Needs Process / Product Development Reports |             |            |                  |     |          |
|          |                 | Development History Report                                  |             |            |                  |     |          |
|          |                 | Manufacturing Monograph                                     |             |            |                  |     |          |
| E-E      | П               | Write Confidential Disclosure Agreement (CDA)               | Feasibility | QA,        | Approved         |     |          |
| E-N      | Ħ               | Approve CDA                                                 |             | Legal      | CDA              |     |          |
| N-E      | Ī               |                                                             |             |            |                  |     |          |
| N-N      |                 |                                                             |             |            |                  |     |          |
| E-E      |                 | Evaluate Facility and Utilities                             | Feasibility | Dev,       | Feasibility      |     |          |
| E-N      |                 | Evaluate Equipment                                          |             | Mfg,       | Assessment       |     |          |
| N-E      |                 | Evaluate Process Capability                                 |             | Eng,       | Report           |     |          |
| N-N      |                 | Evaluate Technical Capacity                                 |             | Reg        |                  |     |          |
|          |                 | Evaluate Analytical Capabilities                            |             | Anl        |                  |     |          |
|          |                 | Evaluate Regulatory Implications                            |             |            |                  |     |          |
|          |                 | Evaluate Material Logistics                                 | F11-1114    | O A /\ /-1 | A alit D a a art |     |          |
| E-E      |                 | Assess Quality Systems                                      | Feasibility | QA/Val     | Audit Report     |     |          |
| 🖊 ISF    | PE <sub>®</sub> | Assess Prior Regulatory Inspections Connecting Pharmaceut   | ical Knowle | dge        |                  |     | ispe.org |
| <u> </u> |                 |                                                             |             |            |                  |     |          |



**Our Solution.** 

The Chemistry of Full Scale Operations (FSO)™



Our Solution, in Detail.

The Chemistry of Full Scale Operations (FSO)™

#### Summary

- TT subset of Product Realization
- Knowledge Transfer is a key element to all TTs
- Upfront work to define complexities, resource needs, and understand business/regulatory strategy allows for smoother and more successful TT
- Risk management enables a more streamlined lifecycle effort
- Solid understanding of company's quality management system essential to defining requirements and flexibility that will be allowed





# QUALITY RISK MANAGEMENT

### References

ICH Q9 "Quality Risk Management"

**FDA Guidance on Process Validation** 

ICH Q8 (R2) "Pharmaceutical Development"

**ASTM E2500** 

**IEC 60812** 

Analysis techniques for system reliability – Procedure for failure mode and effects analysis (FMEA)



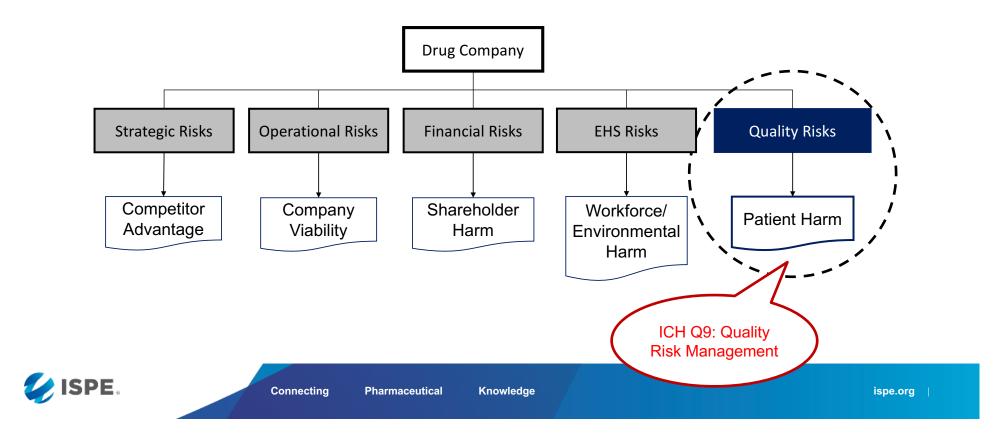
Connecting Pharmaceutical Knowledge ispe.org | 19

#### Risk Management is Universal across all Industries

**Common Elements Key Differences** 

What can go wrong? Risk criteria

How often does it happen? Technology involved


How bad are the consequences? Nature of the hazard

Is the risk acceptable? Whether the system is static or dynamic



**Pharmaceutical** Knowledge

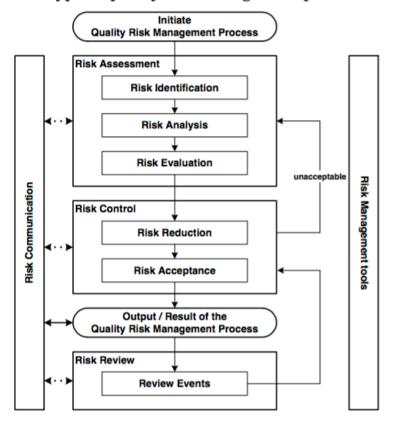
### Risk Management In the Drug Industry



# Quality Risk Management ICH Q9

Figure 1: Overview of a typical quality risk management process

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE


ICH HARMONISED TRIPARTITE GUIDELINE

QUALITY RISK MANAGEMENT
Q9

Current Step 4 version
dated 9 November 2005

This Guideline has been developed by the appropriate ICH Expert Working Group and has been subject to consultation by the regulatory parties, in accordance with the ICH Process. At Step 4 of the Process the final days in recommended for adoption to the regulatory bodies of the European Union, Japan and USA.

Connecting



ispe.org



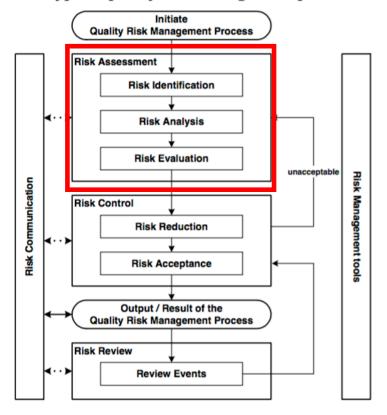
Pharmaceutical Knowledge

#### ICH Q9: Primary Principle #1

"Evaluation of the risk to quality should be based on scientific knowledge (of the product, process and clinical effects) and ultimately link to the protection of the patient"

#### ICH Q9: Primary Principle #2

"The level of effort, formality, and documentation of the quality risk management process should be commensurate with the level of risk"

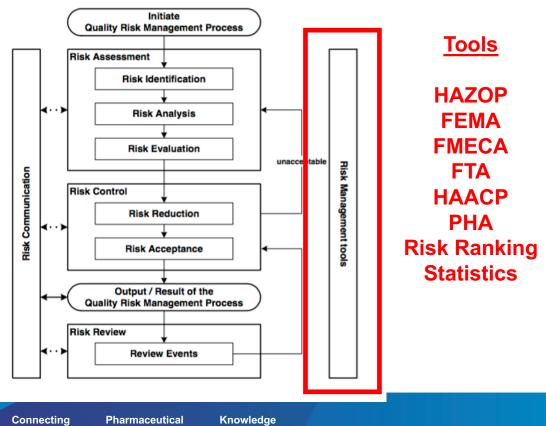



### Risk Assessment

Figure 1: Overview of a typical quality risk management process

#### **Risk Assessments**

**HAZOP FEMA FMECA FTA HAACP PHA Risk Ranking Statistics** 

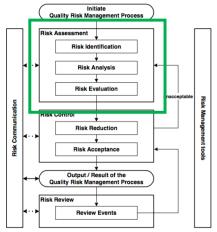


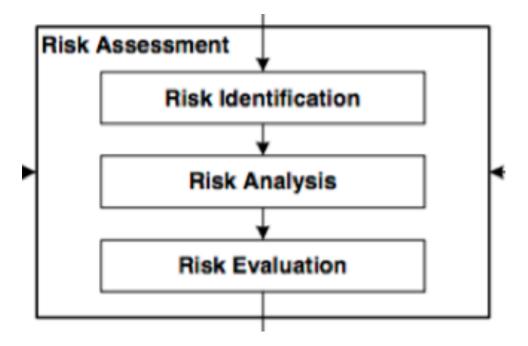



**Pharmaceutical** 

# Risk Management Tools

Figure 1: Overview of a typical quality risk management process




**Pharmaceutical** 

### Risk Assessment

Figure 1: Overview of a typical quality risk management process







Connecting Pharmaceutical Knowledge ispe.org




# RISK ASSESSMENTS

#### **QRM Tool Selection**

Murray, K. and Reich, S.

"Quality Risk Management (QRM) Tool Selection: Getting it Right First Time."

Pharmaceutical Engineering, July/August 2011, Vol. 31 No. 4.





Connecting Pharmaceutical Knowledge ispe.org

# Risk Assessment Options

**Failure Modes Effect Analysis** 

(FMEA / FMECA)

**Fault Tree Analysis** 

**HACCP** 

**Boston Matrix** 

Ishikawa Diagram (Fishbone)



### FMEA / FMECA

Assesses failure modes and looks to reduce impact or occurrence of failure

Relies on robust process understanding

Yields quantitative assessment of risks a risk priority number (RPN)

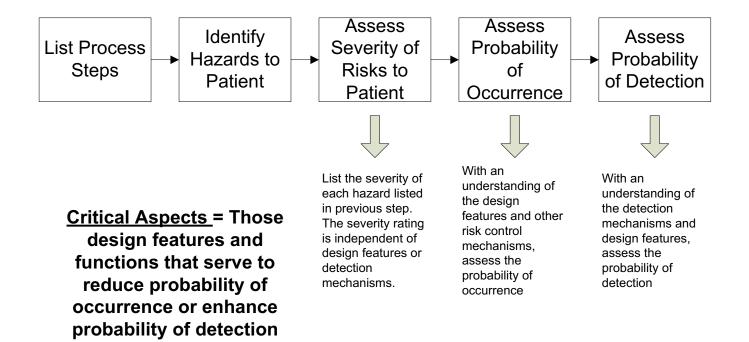
Methodical in nature, can be time consuming



ting Pharmaceutical Knowledge ispe.org

## FMEA / FMECA

Typically applied to an <u>equipment</u> or <u>system</u> boundary


Level of effort may not be justified

Use as deep dive for high risk items



necting Pharmaceutical Knowledge ispe.org

# Process FMEA Example





Connecting Pharmaceutical Knowledge ispe.org

# **Scoring Options**

#### Use a 3 to 5 point scale (Quantitative)

1, 3, 5 1, 5, 10 1, 4, 7 10 1, 10, 100

#### **Qualitative**

Low, Med ,High

Negligible, Low, Med, High, Unacceptable

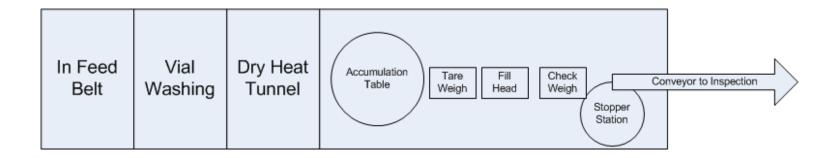
#### **RPN Limits or Thresholds**

Risk is Acceptable or Unacceptable

Grey Zone Suggested



# Aseptic Filling Line - Isolator


**Isolator Sanitized with VHP** 

Product Transfer Line cleaned with CIP and sterilized with SIP

Connecting

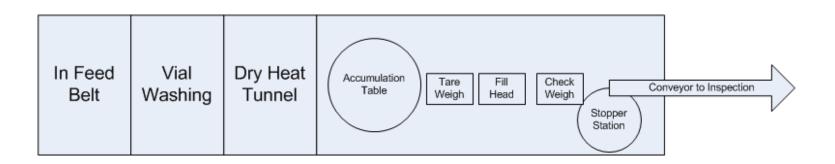
Filling Head parts cleaned in Washer and sterilized in Autoclave

**Tubing Replaced each lot** 





Pharmaceutical Knowledge


# **Process Steps**

**Prepare Equipment Fill Vials** 

**Load Vials Weigh Vials** 

**Wash Vials Stopper Vials** 

**Depyrogenate Vials Convey Vials** 

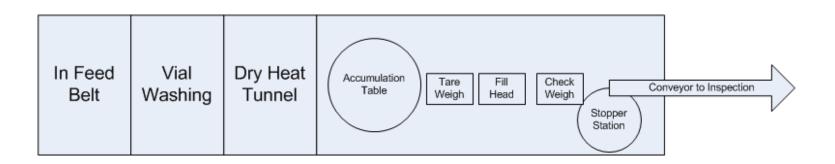




Knowledge **Pharmaceutical** 

#### Hazards to Patient

#### **Wash Vials**


Dirty Vials not adequately Washed resulting in contaminated dose

Contamination from Water or Air ???

#### **Depyrogenation**

Vials do not reach time at temperature resulting in endotoxin dose contamination

Contamination from Air???





**Pharmaceutical** Knowledge

## **Example Output**

| Process<br>Step | Hazard                                             | Severity | Controls | Probability | Detectibility | RPN |
|-----------------|----------------------------------------------------|----------|----------|-------------|---------------|-----|
| Wash<br>Vials   | Dirty Vial not<br>Washed                           |          |          |             |               |     |
| Depyro<br>Vials | Endotoxin Contamination (Time at temp not reached) |          |          |             |               |     |
| Depyro<br>Vials | Microbial<br>Contamination from<br>Air             |          |          |             |               |     |



g Pharmaceutical Knowledge ispe.org

## Example Output (Quantitative)

| Process<br>Step | Hazard                                             | Severity | Controls                                                                                                                                                        | Probability | Detectibility | RPN |
|-----------------|----------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|-----|
| Depyro<br>Vials | Endotoxin Contamination (Time at temp not reached) | 5        | Automation control of belt speed, temperature control, airflow  Alarms associated with belt speed, low temperature, loss of airflow  Calibration of instruments | 1           | 1             | 5   |



nnecting Pharmaceutical Knowledge ispe.org

## **Critical Aspects**

**Belt Speed Control, Indication, Alarm** 

**Tunnel Temperature Control, Indication, Alarm** 

**Airflow Velocity, Loss of Airflow Alarm** 

**Acceptance Criteria driven by process requirements** 



necting Pharmaceutical Knowledge ispe.org

## Fault Tree Analysis

Assumes a failure has occurred with a process or product

**Evaluates sub-process steps and causal effects** 

Represented pictorially as a logic diagram

May be good for root cause analysis or for assessing impact of multiple factors



Pharmaceutical Knowledge ispe.org

## Fault Tree Analysis

Graphical methodology that examines combinations of possible events with undesirable results Human and System Failures

Good for integrated systems analysis, forcing us to think across system boundaries Intended for assessing designs and processes for risk



cting Pharmaceutical Knowledge ispe.org

## Fault Tree Analysis

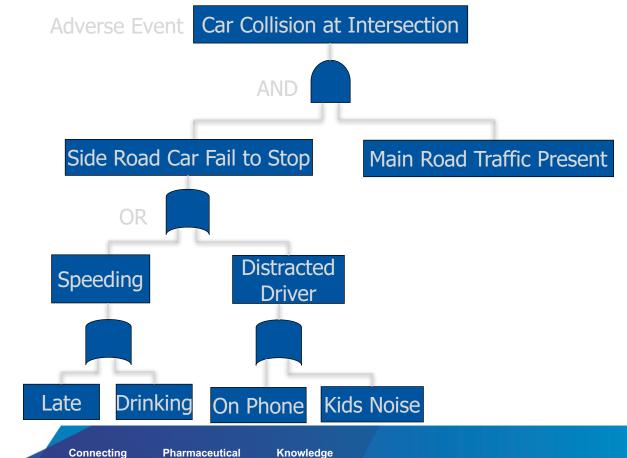
Start by picking the worst event results and work down to possible causes

Technique inherently encourages prioritization of events

Uses a set of symbols to depict actions and relationships



= "AND": combination of events triggers fault




= "OR": one of several possibilities triggers fault



g Pharmaceutical Knowledge ispe.org

## Standard FTA: Common Example





**Pharmaceutical** 

Knowledge

# Hazard Analysis and Critical Control Points (HACCP)

Structured approach applying technical and scientific principles

Analyze, evaluate, prevent, and control the risk or adverse consequence(s) of hazard(s)

Considers design, development, production, and use of products



Pharmaceutical Knowledge ispe.org

# Hazard Analysis and Critical Control Points (HACCP)

Looks for physical, chemical, and biological hazards to process

Requires sufficient process understanding to identify critical control points

Focus is on lifecycle of product, not just manufacturing process



cting Pharmaceutical Knowledge ispe.org

#### From 21 CFR 123.6

List the hazards that are reasonably likely to occur

List the critical control points for hazards

List the limits for each CCP

List the procedures, and frequency for monitoring CCP

List corrective action plans for deviations from CCP limits

List the verification procedures

Provide for a recordkeeping system that documents the monitoring of the CCPs



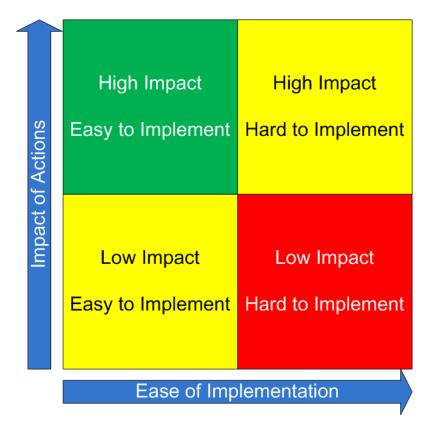
ical Knowledge

### **Boston Matrix**

ispe.org

80 / 20 Rule

Drive focus to area of most need


**Drive focus to actions with most impact** 

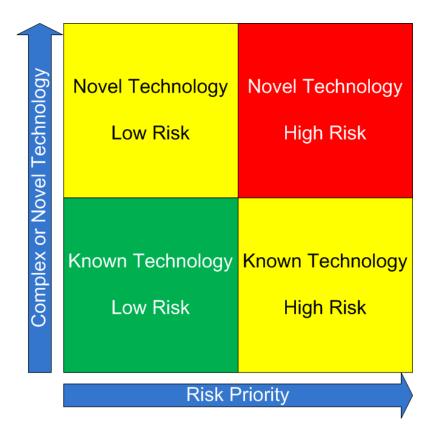
**Drives discussion** 

**Documents decisions** 



## Response to Design Review




Connecting



Pharmaceutical Knowledge

ispe.org

## **FAT Planning**



Connecting



Pharmaceutical Knowledge ispe.org

AKA: Fishbone or Ishikawa diagram

Widely used for Root Cause Analysis

**Used to examine:** 

Man, Method, Machinery, Materials

Effective when output coupled with another tool



## Sample Formulation Process

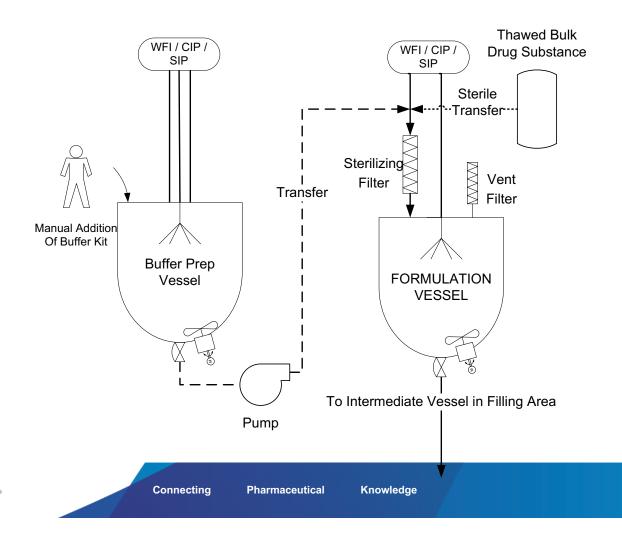
**Formulation Tank CIP/SIP** 

**Buffer Prepared** 

**Bulk Drug Substance Thawed** 

**Buffer and Formulation Added to Formulation Vessel** 

**Mixed and Sampled** 


**Transferred to Filling Area** 



ing Pharmaceutical Knowledge ispe.org

### **Formulation Process**

ispe.org

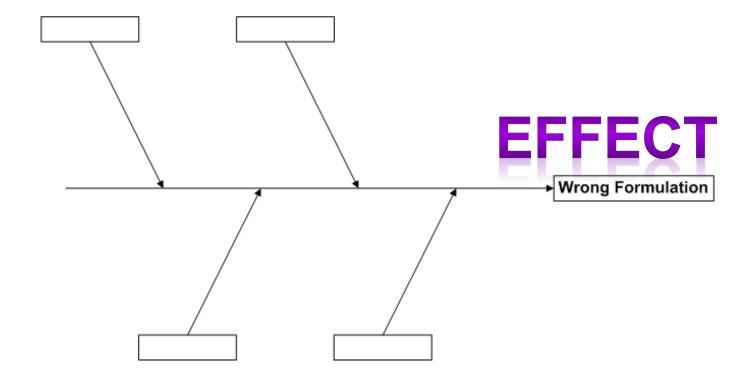




### Hazards to Process

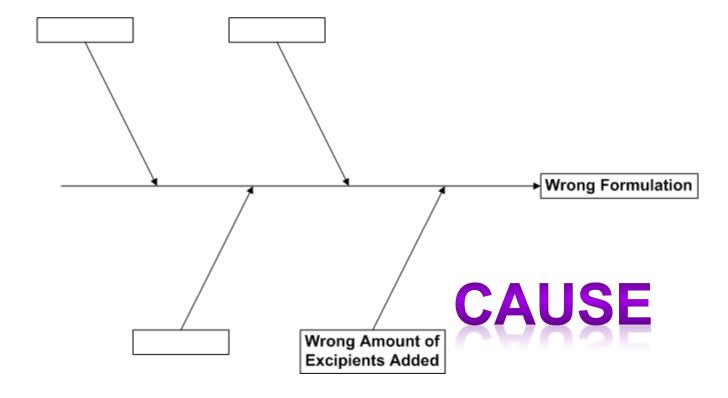
**Microbial Contamination** 

**Protein Degrades or Denatures** 


**Cross Product Contamination** 

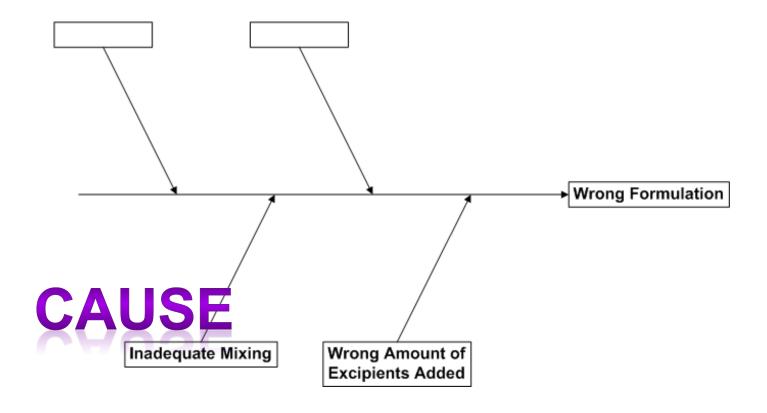
**Wrong Formulation** 

**Endotoxin Contamination** 


**Foreign Material Contamination** 

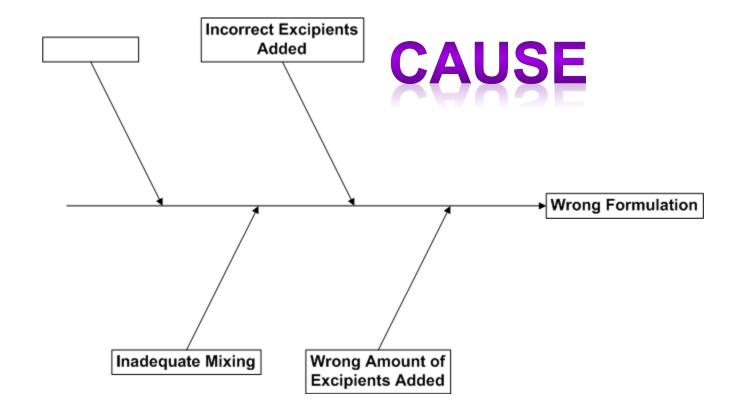







ting Pharmaceutical Knowledge ispe.org

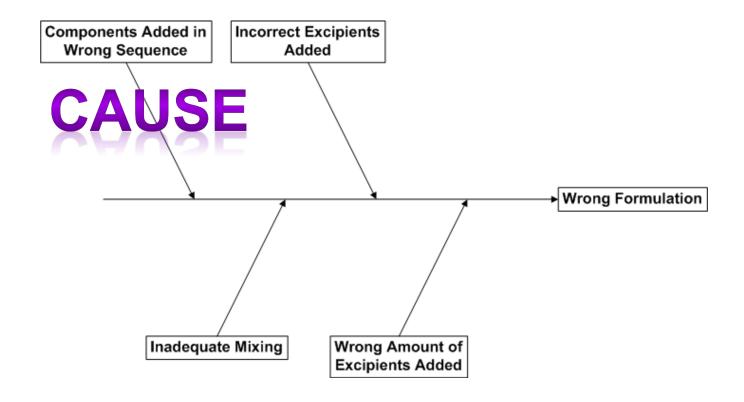





**Pharmaceutical** Knowledge ispe.org

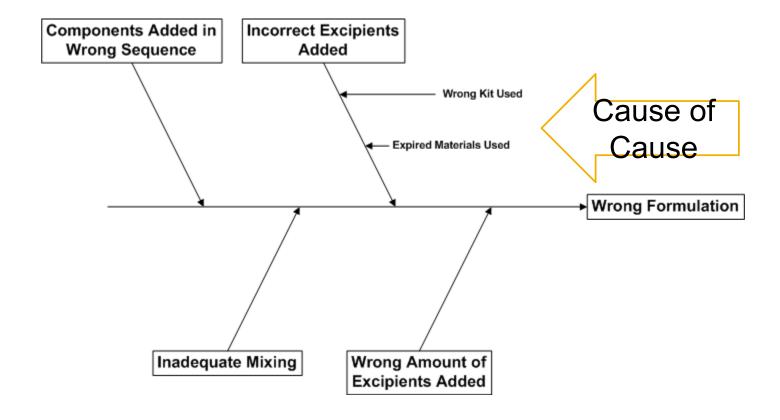





Connecting Pharmaceutical Knowledge ispe.org






Connecting Pharmaceutical Knowledge

ispe.org





ting Pharmaceutical Knowledge ispe.org





Connecting Pharmaceutical Knowledge ispe.org

# Work Shop



Connecting Pharmaceutical Knowledge ispe.org

#### Cause and Effect

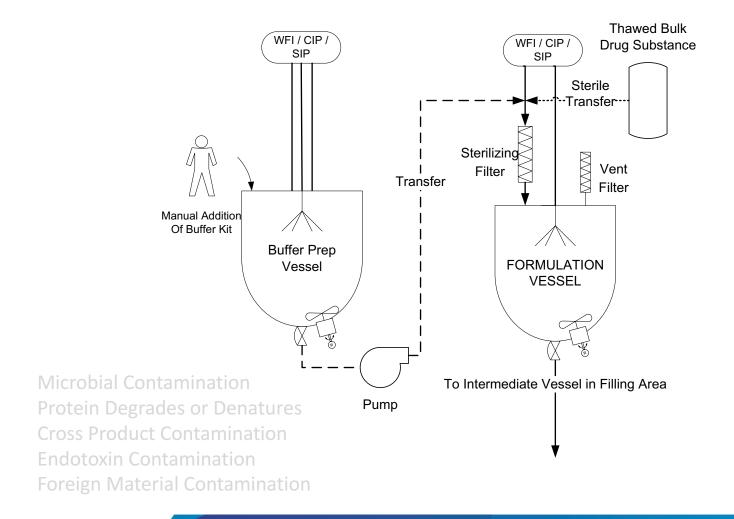
#### Analyze one of the previously identified hazards

Microbial Contamination

Protein Degrades or Denatures

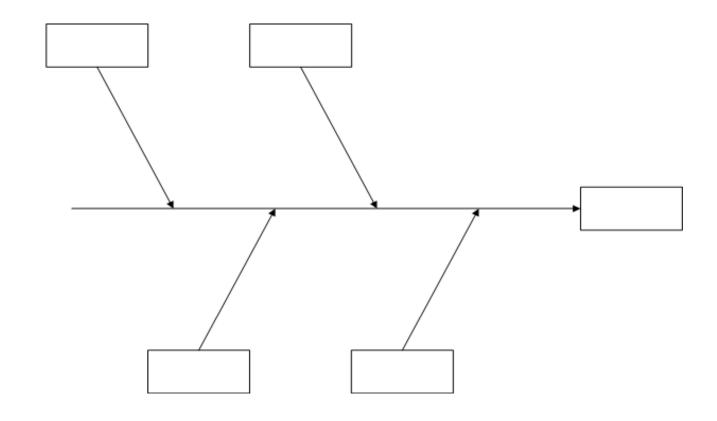
**Cross Product Contamination** 

Wrong Formulation


**Endotoxin Contamination** 

Foreign Material Contamination

Identify at least three 1<sup>st</sup> Tier Causes
Identify at least six 2<sup>nd</sup> Tier Causes




Pharmaceutical Knowledge ispe.org





Connecting Pharmaceutical Knowledge ispe.org





**Pharmaceutical** 

## Thank You!

Timothy P. Howard, CPIP, PE Vice President Commissioning Agents, Inc.





ting Pharmaceutical Knowledge ispe.org